Skip to the content

onlineexamguide

  • Home
  • Courses
  • Engg. Interview
    • Placement Papers
    • Electrical Engineering
    • Mechanical Engineering
    • Automobile Engineering
    • Civil Engineering
    • Computer Science Engineering
    • Chemical Engineering
  • Online Exam
    • NTA UGC NET Exam
    • SSC Examination quiz
    • TET Examination Quiz
    • Banking Exam
    • Aptitude Tests
    • Computer Knowledge Tests
    • Logical Reasoning Tests
    • English Language Tests
    • Staff Nurse Exams
    • General Knowledge Tests
    • Networking Tests
  • Ghatna Chakra
  • Register
    • Instructor Registration
    • Student Registration
  • User Login
  • Home
  • Courses
  • Engg. Interview
    • Placement Papers
    • Electrical Engineering
    • Mechanical Engineering
    • Automobile Engineering
    • Civil Engineering
    • Computer Science Engineering
    • Chemical Engineering
  • Online Exam
    • NTA UGC NET Exam
    • SSC Examination quiz
    • TET Examination Quiz
    • Banking Exam
    • Aptitude Tests
    • Computer Knowledge Tests
    • Logical Reasoning Tests
    • English Language Tests
    • Staff Nurse Exams
    • General Knowledge Tests
    • Networking Tests
  • Ghatna Chakra
  • Register
    • Instructor Registration
    • Student Registration
  • User Login

TRANSIENT RESPONSE OF RC CIRCUITS

TRANSIENT RESPONSE OF RC CIRCUITS An ideal capacitor has an infinite dielectric resistance and plates that have zero resistance.

Table of Contents

  • Ideal and real capacitors:
  • Current decay in source free series RL circuit: –
  • TRANSIENT RESPONSE OF RC CIRCUITS

TRANSIENT RESPONSE OF RC CIRCUITS

Ideal and real capacitors:

An ideal capacitor has an infinite dielectric resistance and plates (made of metals) that have zero resistance. However, an ideal capacitor does not exist as all dielectrics have some leakage current and all capacitor plates have some resistance. A capacitor’s of how much charge (current) it will allow to leak through the dielectric medium. Ideally, a charged capacitor is not supposed to allow leaking any current through the dielectric medium and also assumed not to dissipate any power loss in capacitor plates resistance. Under this situation, the model as shown in fig. 10.16(a) represents the ideal capacitor.

However, all real or practical capacitor leaks current to some extend due to leakage resistance of dielectric medium. This leakage resistance can be visualized as a resistance connected in parallel with the capacitor and power loss in capacitor plates can be realized with a resistance connected in series with capacitor. The model of a real capacitor is shown in fig.

Let us consider a simple series RC−circuit shown in fig. 10.17(a) is connected through a switch ‘S’ to a  constant voltage source .

The switch ‘S’ is closed at time ‘t=0’ It is assumed that the capacitor is initially charged with a voltage and the current flowing through the circuit at any instant of time ‘’ after closing the switch is

Current decay in source free series RL circuit: –

RC and RL circuits
RC and RL circuits

At t = 0- , , switch k is kept at position ‘a’ for very long time. Thus, the network is in steady state. Initial current through inductor is given as,

TRANSIENT RESPONSE OF RC CIRCUITS

Because current through inductor can not change instantaneously

Assume       that at t = 0 switch k is moved to position ‘b’.

Applying KVL,

TRANSIENT RESPONSE OF RC CIRCUITS

Rearranging the terms in above equation by separating variables

TRANSIENT RESPONSE OF RC CIRCUITS

Integrating both sides with respect to corresponding variables

TRANSIENT RESPONSE OF RC CIRCUITS
Where   k’   is   constant   of   integration. 

To   find-    k’:                                                     

Form equation 1, at t=0, i=I0  

Substituting the values in equation 3

Substituting   value   of   k’   from   equation   4   in

TRANSIENT RESPONSE OF RC CIRCUITS

fig. shows variation of current i with respect to time

From the graph, H is clear that current is exponentially decaying. At point P on graph. The current value is (0.363) times its maximum value. The characteristics of decay are determined by values R and L which are two parameters of network.

The voltage across inductor is given by

TRANSIENT RESPONSE OF RC CIRCUITS

Write a comment Cancel reply

You must be logged in to post a comment.

Recent Posts

  • Open circuit characteristics (O.C.C.)
  • Synchronous Generator – Construction & Working Principle
  • Relationship between frequency and speed
  • Alternator and Synchronous Generator EMF Equation
  • Fundamental Principles of A.C. Machines
  • Braking of DC Motor
  • Hopkinson Test
  • Swinburne Test of DC Machine
  • Three Point Starter, Construction and Working Principle
  • Methods for Starting a DC Motor
  • DC Motor Characteristics
  • Types of DC Motor
  • Working of DC Motor
  • DC Motor Principle of operation
  • Commutation and Interpole & DC Generator Characteristics

onlineexamguide

onlineexamguide.com is the ultimate guide that will keep you updated about almost every Exam & Interviews . We aim to provide our readers with an informative details that have been occurring in Examination . Here at onlineexamguide.com , we focus on delivering our readers with the latest exam Pattern Mock test

We Provide Free online test to practice for Competitive exams , Online Exam, Entrance and Interview. Learn and Practice online test for Free and Prepare for your exam online with us

Quick links

  • About us
  • Privacy Policy
  • Instructor Registration
  • Student Registration
  • Java Programming Tests
  • C programming Tests
  • C++ programming Tests
  • Aptitude Tests

Follow us

Free Online Mock Test

  • UPTET PRIMARY Online Test Series
  • Super TET Mock Test in Hindi 2022
  • CTET Mock Test 2022 Paper 1
  • SSC CHSL Online Mock Test
  • SSC MTS Mock Test 2022
  • SSC CGL Mock Test
  • SSC GD Mock Test
  • ccc online test

Search

Learn and Earn

Register as Instructor - Create and sell online courses and coaching services with the best online platform onlineexamguide.com . Build a course, build a brand, earn money

Contact us

For any queries

Email us on - admin@onlineexamguide.com

We will response fast as much as we can
Copyright © 2022 onlineexamguide.com - All Rights Reserved.
error: Content is protected !!

Insert/edit link

Enter the destination URL

Or link to existing content

    No search term specified. Showing recent items. Search or use up and down arrow keys to select an item.