Skip to the content

onlineexamguide

  • Home
  • Courses
  • Engg. Interview
    • Placement Papers
    • Electrical Engineering
    • Mechanical Engineering
    • Automobile Engineering
    • Civil Engineering
    • Computer Science Engineering
    • Chemical Engineering
  • Online Exam
    • NTA UGC NET Exam
    • SSC Examination quiz
    • TET Examination Quiz
    • Banking Exam
    • Aptitude Tests
    • Computer Knowledge Tests
    • Logical Reasoning Tests
    • English Language Tests
    • Staff Nurse Exams
    • General Knowledge Tests
    • Networking Tests
  • Ghatna Chakra
  • Register
    • Instructor Registration
    • Student Registration
  • User Login
  • Home
  • Courses
  • Engg. Interview
    • Placement Papers
    • Electrical Engineering
    • Mechanical Engineering
    • Automobile Engineering
    • Civil Engineering
    • Computer Science Engineering
    • Chemical Engineering
  • Online Exam
    • NTA UGC NET Exam
    • SSC Examination quiz
    • TET Examination Quiz
    • Banking Exam
    • Aptitude Tests
    • Computer Knowledge Tests
    • Logical Reasoning Tests
    • English Language Tests
    • Staff Nurse Exams
    • General Knowledge Tests
    • Networking Tests
  • Ghatna Chakra
  • Register
    • Instructor Registration
    • Student Registration
  • User Login

Phasor diagram for a series RLC circuit

phasor diagram for a series RLC circuit

Table of Contents

  • Phasor diagram
    • RLC Circuit:
    • Steps to draw phasor diagram:
    • Impedance:
    • Power and power triangle:

Phasor diagram for a series RLC circuit

Phasor diagram

Drawing of the phasor diagram for a series RLC circuit energized by a sinusoidal voltage showing the relative position of current, component voltage and applied voltage for the following case

a)     When XL > Xc

 b)    When XL < Xc

c)      When XL = Xc.

RLC Circuit:

Consider a circuit in which R, L, and C are connected in series with each other across ac supply as shown in fig.

The ac supply is given by,

V = Vm sin wt

The circuit draws a current I. Due to that different voltage drops are,

1)     Voltage drop across Resistance R is VR = IR

2)     Voltage drop across Inductance L is VL = IXL

3) Voltage drop across Capacitance C is Vc = IXc The characteristics of three drops are,

1.     VR is in phase with current I

2.     VL leads I by 900

3.     Vc lags I by 900

According to krichoff’s laws

Steps to draw phasor diagram:

1.     Take current I as reference

2.     VR is in phase with current I

3.     VL leads current by 900

4.     Vc lags current by 900

5.     obtain resultant of VL and Vc. Both VL and Vc are in phase opposition (1800 out of phase)

6.     Add that with VR by law of parallelogram to get supply voltage.

The phasor diagram depends on the condition of magnitude of VL and Vc which ultimately depends on values of XL and Xc.

Let us consider different cases:

Case(i): XL > Xc

When X L > Xc

Also VL > Vc (or) IXL > IXc

So, resultant of VL and Vc will directed towards VL i.e. leading current I. Hence I lags V i.e. current I will lags the resultant of VL and Vc i.e. (VL – Vc). The circuit is said to be inductive in nature.

From voltage triangle,

V = √ (VR2 + (VL â€“ Vc) 2) = √ ((IR) 2 + (IXL â€“ IXc) 2)

V = I √ (R2 + (XL â€“ Xc) 2)

And V = IZ

Z = √ (R2 + (XL – Xc) 2 )

If , V = Vm Sin wt    ;  i = Im Sin (wt – Ñ„)

i.e I lags V by angle Ñ„

Case(ii): XL < Xc

When XL < Xc

Also VL < Vc (or) IXL < IXc

Hence the resultant of VL and Vc will directed towards Vc i.e current is said to be capacitive in nature Form voltage triangle

i.e I lags V by angle Ñ„

Case(iii): XL = Xc

When XL = Xc

Also VL = Vc (or) IXL = IXc

So VL and Vc cancel each other and the resultant is zero. So V = VR in such a case, the circuit is purely resistive in nature.

Impedance:

In general for RLC series circuit impedance is given by,

Z = R + j X

X = XL â€“ Xc = Total reactance of the circuit

If   XL > Xc ;         X is positive & circuit is Inductive

If   XL < Xc ;         X is negative & circuit is Capacitive

If  XL = Xc ; X =0 & circuit is purely Resistive

Tan Ñ„ = [(XL – Xc )∕R]

Cos ф = [R∕Z]

Z = √ (R2 + (XL – Xc ) 2)

Impedance triangle:

In both cases        R = Z Cos Ñ„

X = Z Sin Ñ„

Power and power triangle:

The average power consumed by circuit is,

Pavg = (Average power consumed by R) + (Average power consumed by L) + (Average power consumed by C)

Pavg = Power taken by R = I2R = I(IR) = VI

V = V Cos Ñ„

P = VI Cos Ñ„

Thus, for any condition, XL > Xc or XL < Xc General power can be expressed as

P = Voltage x Component in phase with voltage

Power triangle:

S = Apparent power = I2Z = VI

P = Real or True power = VI Cos Ñ„ = Active power

Q = Reactive power = VI Sin Ñ„

Write a comment Cancel reply

You must be logged in to post a comment.

Recent Posts

  • Open circuit characteristics (O.C.C.)
  • Synchronous Generator – Construction & Working Principle
  • Relationship between frequency and speed
  • Alternator and Synchronous Generator EMF Equation
  • Fundamental Principles of A.C. Machines
  • Braking of DC Motor
  • Hopkinson Test
  • Swinburne Test of DC Machine
  • Three Point Starter, Construction and Working Principle
  • Methods for Starting a DC Motor
  • DC Motor Characteristics
  • Types of DC Motor
  • Working of DC Motor
  • DC Motor Principle of operation
  • Commutation and Interpole & DC Generator Characteristics

onlineexamguide

onlineexamguide.com is the ultimate guide that will keep you updated about almost every Exam & Interviews . We aim to provide our readers with an informative details that have been occurring in Examination . Here at onlineexamguide.com , we focus on delivering our readers with the latest exam Pattern Mock test

We Provide Free online test to practice for Competitive exams , Online Exam, Entrance and Interview. Learn and Practice online test for Free and Prepare for your exam online with us

Quick links

  • About us
  • Privacy Policy
  • Instructor Registration
  • Student Registration
  • Java Programming Tests
  • C programming Tests
  • C++ programming Tests
  • Aptitude Tests

Follow us

Free Online Mock Test

  • UPTET PRIMARY Online Test Series
  • Super TET Mock Test in Hindi 2022
  • CTET Mock Test 2022 Paper 1
  • SSC CHSL Online Mock Test
  • SSC MTS Mock Test 2022
  • SSC CGL Mock Test
  • SSC GD Mock Test
  • ccc online test

Search

Learn and Earn

Register as Instructor - Create and sell online courses and coaching services with the best online platform onlineexamguide.com . Build a course, build a brand, earn money

Contact us

For any queries

Email us on - admin@onlineexamguide.com

We will response fast as much as we can
Copyright © 2022 onlineexamguide.com - All Rights Reserved.
error: Content is protected !!

Insert/edit link

Enter the destination URL

Or link to existing content

    No search term specified. Showing recent items. Search or use up and down arrow keys to select an item.