Lesson List
औसत (AVERAGE)
0/1
कैसे ज्ञात करें ईकाई का अंक
0/1
अनुपात एवं समानुपात
संख्या पद्धति
0/1
संख्याओं के योग से बनने वाले प्रश्न
0/1
घातांक एवं करणी
प्रतिशत
0/1
बट्टा
लाभ और हानि
0/1
भिन्न
वर्गमूल तथा घनमूल
सरलीकरण
साधारण ब्याज
0/1
चक्रवृध्दि ब्याज
0/1
कार्य तथा समय
0/1
आयु पर आधरित प्रश्न
0/1
मिश्रण
0/1
समय तथा दूरी
0/1
रेलगाडी
0/1
नाव तथा धारा
0/1
ऊंचाई और दूरी
0/1
त्रिभुज के प्रमेय
0/1
Lesson: Average Tricks
About Lesson

Average बेहद आसान सा टॉपिक है और आप बडे आराम से इसमे अंक प्राप्त कर सकते हैं SSC CGL, Bank PO, IBPS Bank  Clerk तथा अन्य परीक्षाओं में इस टॉपिक से 2-3 सवाल सदैव ही पूछे जाते हैं

Average Formula (Average Tricks)

औसत का मूल सूत्र  =   आंकडों का योगफल /आँकडों की संख्या

या

 कुल राशि = औसत x आँकडों की संख्या

चलिये अब देखें वो प्रश्न जो अक्सर ही प्रतियोगी परीक्षाओं में इस भाग से पूछे जाते हैं

प्रथम तरह के प्रश्न 

इस तरह के सवाल बडे ही सरल होते हैं इनमें सिर्फ और सिर्फ संख्याओं से सम्बंधित सवाल आते है, जैसे – कुछ संख्याओं का औसत निकालने को दिया जा सकता है, या औसत दिया होगा और संख्याओं का योग पूछ लिया जायेगा, चलिये अब देखें इस तरह के कुछ सवाल-

1.  1 से 19 तक की संख्याओं का औसत क्या होगा-
 
इसका सीधा सा सूत्र है-   =   n+1
                                    2
 
= ‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌    19+1   =10
          2
 
 
2.  प्रथम 5 सम संख्याओं का औसत निकालो
 
सूत्र= (n+1)= 5+1= 6
 
i. परन्तु यदि दिया होता कि विषम संख्याओं का औसत निकालो
 
तब उत्तर होता = n =5
 
3. एक प्रकार का प्रश्न होता है जिसमें संख्याओं में बराबर अंतर होता है जिसे क्रमागत संख्याओं की सीरीज़ कहा जाता है, उनका औसत पूछा जाता है
 
जैसे- 5, 8, 11, 14, 17………47   का औसत निकालो,
 
इसका औसत निकालने के लिये बडा आसान सा सूत्र है, इसे याद कर लीजिये
 
=  प्रथम संख्या + अंतिम संख्या 
                  2
 
=   47+5
        2
 
=    26  उत्तर
 
4. इसी प्रकार जो प्रश्न पूछे जाते हैं यहाँ सभी के सूत्र उपलब्ध कराये जा रहे हैं उसके बाद हम दूसरे प्रकार के प्रश्न देखेंगे
a.  1 से लेकर n तक सम संख्याओं का औसत
 = अंतिम सम संख्या + 2
                  2
* यदि अंतिम संख्या सम है,
परंतु यदि विषम है
 
तो = अंतिम संख्या + 1

                 2

एक और प्रकार से आप कर सकते हैं यदि अंतिम संख्या विषम दी हो तो उससे ठीक पहले वाली सम संख्या को ही अंतिम सम संख्या माना जाता है, जैसे यदि अंतिम संख्या 45 दी है तो अंतिम सम संख्या 44 होगी, और औसत 23 होगा,

b. 1 से लेकर n तक विषम संख्याओं का औसत
 
इस तरह के प्रश्नों में हमें सिर्फ ये ज्ञात करना होता है कि 1 से लेकर n तक विषम संख्याओं की संख्या कितनी है और जैसा कि आप जानते हैं कि विषम संख्याओं का औसत ऐसी स्थिति में उनकी संख्या ही होती है
 
 
जैसे- 1 से 9 तक की विषम संख्याओं का औसत निकालो – या – 1 से 10 तक की संख्याओं का औसत निकालो
पहली स्थिति में हमें (9+1) में 2 से भाग देना है और उत्तर आ जायेगा और दूसरी स्थिति में हमें बस 10 को 2 से विभाजित करना है, क्योंकि आधी संख्यायें सम और आधी विषम होती हैं
 
c. प्राकृतिक संख्याओं के वर्गों का औसत-
(n+1)(2n+1)
           6
(जहाँ  “n” अंतिम संख्या है‌)
 
d. प्रथम प्राकृतिक संख्याओं के घनों का औसत=  n(n+1)2

                                                            4
(जहाँ  “n” अंतिम संख्या है‌)

दूसरे प्रकार के प्रश्न

1. किसी कक्षा के 30 छात्रों की औसत आयु 14 वर्ष है, यदि एक अध्यापक की भी आयु शामिल कर ली जाये तो औसत आयु 15 वर्ष हो जाती है अध्यापक की आयु ज्ञात कीजिये

इसके लिये एक सामान्य सा सूत्र है और आप इसे बिना सूत्र के मौखिक भी निकाल सकते हैं वो बाद में जानेंगे पहले सूत्र

= नया औसत + सदस्यों की पुरानी संख्या x औसत में वृध्दि

= 15 + 30 x 1
= 45

2. चार व्यक्तियों का औसत वज़न 3 किलोग्राम बढ जाता है यदि 120 किलोग्राम वज़न वाले व्यक्ति के स्थान पर किसी और व्यक्ति को शामिल कर लिया जाता है

ये प्रश्न भी पहले वाले सूत्र से किया जा सकता है

= 120 + 4 x 3

= 132  किलोग्राम

3 . यदि कोई व्यक्ति किसी निश्चित दूरी को X कि0 मी0/ घंटा की रफ्तार से तथा उसी दूरी को Y किलोमीटर/घंटा की रफ्तार से तय करे तो उसकी औसत चाल क्या होगी ?

इसका सरलतम सूत्र है

2xy

    x+yऔर यदि वह तीन विभिन्न चालों से चले(xyz)

तो सूत्र होगा

=    3 xyz
xy+yz+zx

4. तीन लडकों की औसत आयु 15 वर्ष है यदि उनकी आयु 3:5:7 के अनुपात में है, सबसे छोटे लडके की आयु क्या होगी ?  (SSC CGL 2014)
हल:
तीनों लडकों की कुल आयु होगी = 15 x 3 = 45 वर्ष
अब 45 वर्ष को 3 :5 : 7 के अनुपात में विभाजित कर लीजिये आपका उत्तर आ जायेगा

=   45
3+5+7

=  45
15

= 3

अब क्युंकि सबसे छोटे लडके की आयु पूछी गयी है इसलिये इसे सबसे छोटे वाले अनुपात से गुणा करेंगे

= 3 x 3 = 9 वर्ष

5. एक कक्षा के 40 छात्रों द्वारा प्राप्त अंको का औसत 86  है यदि 5 सर्वाधिक अंको को निकाल दिया जाये तो औसत एक अंक कम हो जाता है शीर्ष 5 छात्रों के औसत अंक बताइये

हल:

सबसे पहले हम अभी अंको का योग निकालेंगे

= 86 x 40 = 3440

अब जो योग उन पाँच अंको को निकालने के बाद बनेगा वह है

= 35 x 85 = 2975

दोनों का अंतर = 3440 – 2975 = 465

ये है उन पाँच अंको का योग, अब इसका औसत निकालेंगे

465
5

= 93  उत्तर

6. चार बहनों की औसत आयु 7 वर्ष है यदि माँ की आयु शामिल कर दी जाये तो औसत आयु 6 वर्ष बढ जाती है तो माँ की आयु होगी 

हल:
सबसे पहले 4 बहनों की कुल आयु = 7 x 4 = 28

अब जब माँ की आयु शामिल कर ली जाती है तो औसत हो जाता है= 13

तथा कुल लोग = 4 बहन + माँ = 5

इसलिये कुल आयु = 13 x 5 = 65

अत: माँ की आयु = 65- 28 = 37 वर्ष

Average Short Tricks से –

= नया औसत + सदस्यों की पुरानी संख्या x औसत में वृध्दि

= 13 + 4 x 6

= 37  वर्ष

7. किक्रेट के एक खिलाडी का 10 पारियों का कुछ औसत था 11 वीं पारी में उसने 108 रन बनाये तथा इससे उसकी औसत रन संख्या में 6 की बृध्दि हो गई अब उनकी औसत रन संख्या कितनी है

हल-
n वी पारी = 11

बनाये रन= 108

औसत में बृध्दि= 6

अभीष्ट औसत रन संख्या=आखिरी पारी n में बनाये रन -(n-1) x औसत में बृध्दि

=108 – (11-1) x 6

=108-60

= 48  रन

8. एक किक्रेट मैच में 6 खिलाडीयों की औसत रन संख्या 36 थी यदि इनमें से एक खिलाडी ने 16 रन बनाये हो, तो शेष खिलाडीयों की औसत रन संख्या कितना है

हल:

कुल रन = 36 x 6 = 216

इनमें से एक खिलाडी ने 16 रन बनाये हैं उन्हें घटा देते हैं

= 216- 16

= 200

अत: शेष खिलाडियों का औसत

= 200/5 = 40   उत्तर

तृतीय प्रकार के सवाल

1. किसी कक्षा के 30 छात्रों की औसत आयु 14 वर्ष है, यदि एक अध्यापक की भी आयु शामिल कर ली जाये तो औसत आयु 15 वर्ष हो जाती है अध्यापक की आयु ज्ञात कीजिये

इसके लिये एक सामान्य सा सूत्र है और आप इसे बिना सूत्र के मौखिक भी निकाल सकते हैं वो बाद में जानेंगे पहले सूत्र

= नया औसत + सदस्यों की पुरानी संख्या x औसत में वृध्दि

= 15 + 30 x 1
= 45

2. चार व्यक्तियों का औसत वज़न 3 किलोग्राम बढ जाता है यदि 120 किलोग्राम वज़न वाले व्यक्ति के स्थान पर किसी और व्यक्ति को शामिल कर लिया जाता है

ये प्रश्न भी पहले वाले सूत्र से किया जा सकता है

= 120 + 4 x 3

= 132  किलोग्राम

3 . यदि कोई व्यक्ति किसी निश्चित दूरी को X कि0 मी0/ घंटा की रफ्तार से तथा उसी दूरी को Y किलोमीटर/घंटा की रफ्तार से तय करे तो उसकी औसत चाल क्या होगी ?

इसका सरलतम सूत्र है

= 2xy

x+yऔर यदि वह तीन विभिन्न चालों से चले(xyz)

तो सूत्र होगा

=    3 xyz
xy+yz+zx

4. तीन लडकों की औसत आयु 15 वर्ष है यदि उनकी आयु 3:5:7 के अनुपात में है, सबसे छोटे लडके की आयु क्या होगी ? 
हल:
तीनों लडकों की कुल आयु होगी = 15 x 3 = 45 वर्ष
अब 45 वर्ष को 3 :5 : 7 के अनुपात में विभाजित कर लीजिये आपका उत्तर आ जायेगा

=   45
3+5+7

=  45
15

= 3

अब क्युंकि सबसे छोटे लडके की आयु पूछी गयी है इसलिये इसे सबसे छोटे वाले अनुपात से गुणा करेंगे

= 3 x 3 = 9 वर्ष

5. एक कक्षा के 40 छात्रों द्वारा प्राप्त अंको का औसत 86  है यदि 5 सर्वाधिक अंको को निकाल दिया जाये तो औसत एक अंक कम हो जाता है शीर्ष 5 छात्रों के औसत अंक बताइये 

हल:

सबसे पहले हम अभी अंको का योग निकालेंगे

= 86 x 40 = 3440

अब जो योग उन पाँच अंको को निकालने के बाद बनेगा वह है

= 35 x 85 = 2975

दोनों का अंतर = 3440 – 2975 = 465

ये है उन पाँच अंको का योग, अब इसका औसत निकालेंगे

= 465
5

= 93  उत्तर

6. चार बहनों की औसत आयु 7 वर्ष है यदि माँ की आयु शामिल कर दी जाये तो औसत आयु 6 वर्ष बढ जाती है तो माँ की आयु होगी  

हल:
सबसे पहले 4 बहनों की कुल आयु = 7 x 4 = 28

अब जब माँ की आयु शामिल कर ली जाती है तो औसत हो जाता है= 13

तथा कुल लोग = 4 बहन + माँ = 5

इसलिये कुल आयु = 13 x 5 = 65

अत: माँ की आयु = 65- 28 = 37 वर्ष

Short Trick से –

= नया औसत + सदस्यों की पुरानी संख्या x औसत में वृध्दि

= 13 + 4 x 6

= 37  वर्ष

7. किक्रेट के एक खिलाडी का 10 पारियों का कुछ औसत था 11 वीं पारी में उसने 108 रन बनाये तथा इससे उसकी औसत रन संख्या में 6 की बृध्दि हो गई अब उनकी औसत रन संख्या कितनी है

हल-
n वी पारी = 11

बनाये रन= 108

औसत में बृध्दि= 6

अभीष्ट औसत रन संख्या=आखिरी पारी n में बनाये रन -(n-1) x औसत में बृध्दि

=108 – (11-1) x 6

=108-60

= 48  रन

8. एक किक्रेट मैच में 6 खिलाडीयों की औसत रन संख्या 36 थी यदि इनमें से एक खिलाडी ने 16 रन बनाये हो, तो शेष खिलाडीयों की औसत रन संख्या कितना है

हल:

कुल रन = 36 x 6 = 216

इनमें से एक खिलाडी ने 16 रन बनाये हैं उन्हें घटा देते हैं

= 216- 16

= 200

अत: शेष खिलाडियों का औसत

= 200/5 = 40   उत्तर

 
 
 
Exercise Files
No Attachment Found
No Attachment Found
Lesson List
औसत (AVERAGE)
0/1
कैसे ज्ञात करें ईकाई का अंक
0/1
अनुपात एवं समानुपात
संख्या पद्धति
0/1
संख्याओं के योग से बनने वाले प्रश्न
0/1
घातांक एवं करणी
प्रतिशत
0/1
बट्टा
लाभ और हानि
0/1
भिन्न
वर्गमूल तथा घनमूल
सरलीकरण
साधारण ब्याज
0/1
चक्रवृध्दि ब्याज
0/1
कार्य तथा समय
0/1
आयु पर आधरित प्रश्न
0/1
मिश्रण
0/1
समय तथा दूरी
0/1
रेलगाडी
0/1
नाव तथा धारा
0/1
ऊंचाई और दूरी
0/1
त्रिभुज के प्रमेय
0/1
0% Complete
error: Content is protected !!